The website for the MARGO project conference is online
Category: MARGO Graphene Flagship
Press release Supervised Single-shot Polarimetry (ITA)
Ricercatori dell’Istituto dei sistemi complessi del Consiglio nazionale delle ricerche e della Sapienza Università di Roma hanno sviluppato un polarimetro “intelligente” ultra-veloce e super-compatto che permette di utilizzare la polarizzazione della luce per applicazioni nei campi della comunicazione ottica sicura, dei sensori fotonici e della medicina. Lo strumento è descritto in un articolo su Nature Communications
Ricercatori dell’Istituto dei Sistemi complessi del Consiglio nazionale delle ricerche di Roma (Cnr-Isc) e del Dipartimento di Fisica della Sapienza Università di Roma hanno sviluppato un innovativo strumento che permette di “vedere” tramite la polarizzazione, e utilizzare tale proprietà per applicazioni nei campi della comunicazione ottica sicura su grande distanza, dei sensori fotonici con funzionalità aumentate, e nuovi strumenti per la medicina.
La polarizzazione, assieme alla frequenza e all’intensità, è una delle tre proprietà fondamentali delle onde elettromagnetiche. Mentre le ultime due si manifestano ogni giorno tramite i colori e la brillantezza di una moltitudine di sorgenti di luce diverse quali led, microonde e laser, la polarizzazione della luce è meno conosciuta. I nostri occhi non sono sensibili a questa proprietà – che indica la direzione di oscillazione del campo ottico – e non ci accorgiamo, pertanto, di come essa sia alla base del funzionamento di oggetti di uso comune, come i display. Vedere tramite la polarizzazione permette di rilevare oggetti apparentemente invisibili in condizioni di scarsissima visibilità, e di scoprire dettagli che sono nascosti nelle normali fotografie. Inoltre, in applicazioni quali la visione digitale permette di osservare caratteristiche fisiche dei materiali nascoste – come tensioni, torsioni ed imperfezioni superficiali – e svolge un ruolo chiave nel settore dell’informazione quantistica.
Lo strumento sviluppato da Davide Pierangeli e Claudio Conti, rispettivamente dell’Istituto dei sistemi complessi del Cnr e del Dipartimento di Fisica della Sapienza Università di Roma supera il limite dell’assenza, fino ad oggi, di metodi e strumenti compatti per ottenere immagini in polarizzazione in modo ultraveloce: gli attuali rivelatori, infatti – i cosiddetti polarimetri – utilizzano molte misurazioni tramite apparati ottici costosi e voluminosi.
In particolare, il dispositivo realizzato è innovativo in quanto permette di misurare molte polarizzazioni in un singolo “shot”, basandosi sull’intelligenza artificiale. Inoltre, non necessita dei componenti ottici convenzionali di polarizzazione.
“Rivelare la così detta «terza dimensione della luce» in modo efficiente è una sfida centrale per la fotonica”, spiega Davide Pierangeli (Cnr-Isc). “La nostra idea è stata quella di rivelare la polarizzazione misurando un’altra proprietà fisica apparentemente non collegata ad essa, cioè la distribuzione d’intensità ottica che viene prodotta da un chip disordinato, e da questa tramite tecniche di apprendimento automatico estrarre l’informazione sulle molte polarizzazioni codificate nel fascio laser”.
“Il nostro studio dimostra un rivelatore di polarizzazione smart basato su intelligenza artificiale con funzionalità attualmente non ottenibili in strumenti convenzionali”, continua Claudio Conti (Sapienza Università di Roma). “Questo apre le porte alla comunicazione ottica sicura, a nuovi strumenti per la medicina e la guida autonoma”.
Il risultato, pubblicato sulla rivista Nature Communications, apre importanti prospettive per l’applicazione della luce polarizzata strutturata nella comunicazione ottica, nell’imaging, e nella computazione.
https://www.fmag.it/2023/04/12/polarizzazione-immagini-svelata-ia-ricerca/
Riferimenti:
Single-shot polarimetry of vector beams by supervised learning – Davide Pierangeli & Claudio Conti – Nature Communications (2023) https://doi.org/10.1038/s41467-023-37474-0
Supervised single-shot polarimetry in Nature Communications
DOI 10.1038/s41467-023-37474-0
https://www.nature.com/articles/s41467-023-37474-0.pdf
States of light encoding multiple polarizations – vector beams – offer unique capabilities in metrology and communication. However, their practical application is limited by the lack of methods for measuring many polarizations in a scalable and compact way. Here we demonstrate polarimetry of vector beams in a single shot without any polarization optics. We map the beam polarization content into a spatial intensity distribution through light scattering and exploit supervised learning for single-shot measurements of multiple polarizations. We characterize structured light encoding up to nine polarizations with accuracy beyond 95% on each Stokes parameter. The method also allows us to classify beams with an unknown number of polarization modes, a functionality missing in conventional techniques. Our findings enable a fast and compact polarimeter for polarization-structured light, a general tool that may radically impact optical devices for sensing, imaging, and computing.
Launching optical tsunamis against tumor cells
We demonstrate the excitation of giant rogue waves of light inside human pancreatic tumor cells; they can be used for deep light transport and local heating for cancer treatment.
Rogue waves are intense and unexpected wavepackets ubiquitous in complex systems. In optics, they are promising as robust and noise-resistant beams for probing and manipulating the underlying material. Localizing large optical power is crucial, especially in biomedical systems, where extremely intense beams have not yet been observed. We here discover that tumor-cell spheroids manifest optical rogue waves when illuminated by randomly modulated laser beams. The intensity of light transmitted through bio-printed three-dimensional tumor models follows a signature Weibull statistical distribution, where extreme events correspond to spatially-localized optical modes propagating within the cell network. Experiments varying the input beam power and size indicate that rogue waves have a nonlinear origin. We show these optical filaments form high-transmission channels with enhanced transmission. They deliver large optical power through the tumor spheroid, which can be exploited to achieve a local temperature increase controlled by the input wave shape. Our findings shed new light on optical propagation in biological aggregates and demonstrate how extreme event formation allows light concentration in deep tissues, paving the way to using rogue waves in biomedical applications such as light-activated therapies
MARGO project startup
(Image above from Unsplash collection by Spentys )
Our new project within the Graphene Flagship ( Flagera Call JTC 2019) officially started !
MARGO stands for MAxillofacial bone Regeneration by 3D-printed laser-activated Graphene Oxide Scaffolds
MARGO is an exciting data-driven interdisciplinary research on our previous results on the Antibacterial coating and stem cell replication by Graphene Oxide, following our ERC PoC Project VANGUARD!
See also